

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Digital Signal Processing (16EC422)

Course & Branch: B.Tech - EEE

Regulation: R16

UNIT –I

REVIEW OF DISCRETE-TIME SIGNALS AND SYSTEMS & DISCRETE FOURIER TRANSFORM1a) Explain the classification of discrete time signals and systems.[L2][CO1][5M]b) Determine the circular convolution for the two sequences $x_1(n) = \{1,2,3,4\}$,
 $x_2(n) = \{1,5,1,3\}$ using concentric circles method.[L5][CO1][7M]2a) Find impulse response of the system described by the difference equation[L2][CO1][6M]

2	a) Find impulse response of the system described by the difference equation	[L2][CO1]	[6M]
	y(n)+y(n-1)-2y(n-2)=x(n-1)+2x(n-2).	[L2][CO1]	[6M]
	b) Find 4-point DFT of the sequence $x(n) = \{1, 6, 4, 3\}$.		
3	a) Determine the linear convolution of following two sequences:	[L5][CO1]	[6M]
	$x(n) = \{3,2,1,2\}; h(n) = \{1,2,1,2\}$		
	\mathbf{f}		
	b) Explain the power signal and Energy signal.	[L2][CO1]	[6M]
4	Find the response of the system described by the difference equation:	[L1][CO1]	[12M]
	$y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1)$ for the input $x(n) = (\frac{1}{2})^n u(n)$, with initial		
	conditions $y(-1)=y(-2)=1$.		
5	Find the forced response of the system described by the difference equation:	[L2][CO1]	[12M]
	$y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1)$ for input $x(n) = (-1)^n u(n)$.		
6	State and prove following properties of DFT	[L5][CO1]	[12M]
	i)Circular shifting ii)Time reversal iii)complex conjugate iv)Linearity v)Circular		
	convolution		
7	Find the output y(n) of a filter whose impulse response is h(n)=[1,-1] and input	[L1][CO1]	[12M]
	x(n) = [1, -2, 2, -1, 3, -4, 4, -3] using		
	i) overlap add method ii) overlap-save method		
8	a) Find 8 point DFT of the sequence x(n)=[1,2,1,0,2,3,0,1]	[L1][CO1]	[7M]
	b) Describe the relation between i) DFT to Z- transform ii) DFT to Fourier Series.	[L1][CO1]	[5M]
9	a) Explain how DFT can used as a linear Transform.	[L2][CO1]	[6M]
	b) Find the forced response of the system described by the difference equation:		
	$y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1)$ for input $x(n)=(-1)^n u(n)$.	[L1][CO1]	[6M]
10	a) Explain frequency analysis of discrete-time systems.	[L2][CO1]	[4M]
	b) Find the natural response of the system described by difference equation	[L1][CO1]	[8M]
	y(n)+2y(n-1)+y(n-2)=x(n)+x(n-1) with initial condition $y(-1)=y(-2)=1$.		

UNIT –II EFFICIENT COMPUTATION OF THE DFT

1	Determine 8-point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using radix-2 DIT-FFT	[L5][CO2]	[12M]
1	Algorithm.		
2	a) Construct Radix-4 DIF FFT algorithm with neat sketch.	[L2][CO2]	[6M]
	b) Compare DFT and FFT algorithms.	[L4][CO2]	[6M]
3	Determine 8-point DFT of the sequence $x(n) = \{1,2,1,2,1,2,2,1\}$ using radix-2 DIF-FFT Algorithm.	[L5][CO2]	[12M]
4	a) Construct the decimation in time FFT algorithm with butterfly diagram.	[L1][CO2]	[6M]
	b) Explain use of FFT in linear filtering and correlation.	[L2][CO2]	[6M]
5	a) With a neat sketch find 4 point DFT of the sequence $x(n)=[1,6,7,4]$ using	[L3][CO2]	[8M]
	radix2 DIT-FFT algorithm.		
	b) Interpret the applications of FFT algorithm.	[L1][CO2]	[4M]
6	Develop an 8-point DIF-FFT algorithm. Draw the signal flow graph. Determine	[L3][CO2]	[12M]
	the DFT of the following sequence, $x(n) = \{1,1,1,0,0,1,1,1\}$.		
7	a) Explain decimation in frequency FFT algorithm.	[L2][CO2]	[6M]
	b) Compare radix-2 DIT-FFT and DIF-FFT algorithms.	[L4][CO2]	[6M]
8	a) Explain Radix-4 FFT algorithm in decimation in time domain.	[L2][CO2]	[6M]
	b) Describe Quantization errors in the direct computation of DFT.	[L1][CO2]	[6M]
9	How do you compute DFT using	[L1][CO2]	[12M]
	i) The Goertzel Algorithm ii) The chrip-z Transform.		
10	a) Explain divide and conquer approach to computation of the DFT.	[L2][CO2]	[6M]
	b) Explain Radix-4 FFT algorithm with neat butterfly diagram.	[L2][CO2]	[6M]

UNIT –III STRUCTURES FOR THE REALIZATION OF DISCRETE-TIME SYSTEMS

1	(a) Discuss the realization of FIR filter structures.	[L6][CO3]	[6M]
	(b) Determine the cascade form realization for the following FIR filter with	[L5][CO3]	[6M]
	system function H (z) = $1 + (5/2)$ z-1+2z-2+2z-3.		
2	a) Determine the direct form realization for FIR filter of the following impulse	[L5][CO3]	[6M]
	response		
	$h(n) = \delta(n) + 1/2 \delta(n-1) - 1/4 \delta(n-2) + \delta(n-4) + 1/3 \delta(n-3).$		
	b)Determine the direct form realization for the following linear phase filters	[L5][CO3]	[6M]
	h(n) = [1,2,-4,2,3,1,2].		
3	a) Explain about lattice structure for FIR systems.	[L2][CO3]	[6M]
	b) Determine the lattice structure for the following FIR filter function	[L5][CO3]	[6M]
	H (z) = $1 + 2z^{-1} + 1/3 z^{-2}$.		
4	Determine the transfer function H(Z) of an FIR filter to implement	[L5][CO3]	[12M]
	$h(n) = \delta(n) + 2\delta(n-1) + \delta(n-2)$ using frequency sampling technique.		
5	(a) Explain the advantages and disadvantages of Direct form-II realization.	[L2][CO3]	[6M]
	(b) Determine the cascade form realization for IIR system with difference		
	equation	[L5][CO3]	[6M]
	y(n) = y(n - 1) + 2y(n - 2) + x(n).		
6	Determine a parallel form realization for the following IIR system:	[L5][CO3]	[12M]
	$H(Z) = (1+Z^{-1})(1+2Z^{-1})$		
	$(1+1/2 Z^{-1})(1-1/4 Z^{-1})(1+1/8 Z^{-1})$		
7	Determine the realization for IIR system with following difference equation	[L5][CO3]	[12M]
	y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3) x(n-1)		
	(i) direct form-I (ii) direct form-II		
8	Determine realization for IIR system with following difference equation	[L5][CO3]	[12M]
	y(n) = (3/4) y(n-1) - (1/8) y(n-2) + x(n) + (1/3)x(n-1).		
	(i) cascade form (ii) Parallel form		
9	a) Explain briefly about Signal flow graph & transposed structures with an	[L2][CO3]	[6M]
	example.		
		[L2][CO3]	[6M]
	b) Explain about conversion from lattice structure to direct form for IIR systems.		
10	Determine the direct form I, direct form-II, cascade and parallel form realization	[L5][CO3]	[12M]
	for the system $y(n) = -0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2)$.		
	101 the system f(n) = 0.1 f(n-1) + 0.2 f(n-2) + 5 x(n) + 5.0 x(n-1) + 0.0 x(n-2).		

UNIT –IV IIR FILTER DESIGN

1	(a) Explain about frequency transformation in analog domain.	[L2][CO4]	[6M]
	(b) Compare FIR and IIR filters.	[L4][CO4]	[6M]
2	(a) Discuss about Lowpass to highpass transformation in analog domain	[L6][CO4]	[6M]
	(b) Design a highpass filter for the given specifications $\alpha_p=3dB$; $\alpha_s=15dB$;	[L6][CO4]	[6M]
	$\Omega p=1000 rad/sec$ and $\Omega s=500 rad/sec$.		
3	Explain the IIR filter design using approximation of derivatives method. and also	[L2][CO4]	[12M]
	Sketch the s-plane to z-plane mapping using approximation of derivatives		
	method.		
4	(a)Explain the design steps of a digital filter using Impulse Invariance method.	[L2][CO4]	[5M]
	(b)For the analog transfer function $H(s)=2/(s+1)(s+2)$ determine $H(s)$ using	[L5][CO4]	[7M]
	impulse invariance method. Assume T=1 sec.		
5	Explain the IIR filter design approximation using Bilinear Transformation	[L2][CO4]	[12M]
	method. Also sketch the s-plane to z-plane mapping. State its merits and		
	demerits.		
6	Convert the following analog filter transfer function using backward difference	[L6][CO4]	[12M]
	method, Impulse invariant method and Bilinear Transformation method.		
	H(s)=1/(s+0.2) Consider T= 1 Sec.		
7	Design a third order Butterworth digital filter using impulse invariant technique.	[L6][CO4]	[12M]
	Assume sampling period T=1 sec.		
8	(a) What is bilinear transformation? Mention its properties.	[L1][CO4]	[5M]
	(b) Explain about frequency transformation in digital domain.	[L2][CO4]	[7M]
9	Design an analog Butterworth filter that has a -2db pass band attenuation at a	[L6][CO4]	[12M]
	frequency of 20rad/sec and at least -10dB stop band attenuation at 30 rad/sec		
	(assume $\Omega c = 21.3868 \text{ rad/sec}$).		
10	Design a digital Butterworth filter satisfying the constraints	[L6][CO4]	[12M]
	$0.707 \le \mathrm{H}(\mathrm{e}^{\mathrm{j}\omega}) \le 1$ for $0 \le \omega \le \pi/2$		
	$ H(e^{j\omega}) \le 0.2$ for $3\pi/4 \le \omega \le \pi$ with T=1 sec using		
	i) The bilinear Transformation ii) Impulse invariance method.		
L			

1	a) Explain about characteristics of practical frequency selective filters.	[L2][CO5]	[8M]
	b) What are the merits and demerits of FIR filters?	[L1][CO5]	[4M]
2	a) Explain about design of symmetric and asymmetric FIR filters.	[L2][CO5]	[7M]
	b) Discuss the frequency selective filters with plot.	[L1][CO5]	[5M]
3	Design an ideal band pass filter with a frequency response	[L6][CO5]	[12M]
	$H_d(e^{jw}) = 1 \pi/4 \le w \le 3\pi/4$		
	= 0 otherwise		
	Find the values of $h(n)$ for N=11 and plot frequency response.		
4	Design an ideal HPF with desired frequency response $H_d(e^{jw}) = 1$ for $\pi/4 \le w \le \pi$	[L6][CO5]	[12M]
	0 for $ w \leq \pi/4$		
	Find the values of $h(n)$ for N=11 and also find $H(Z)$ using		
	Hanning window technique.		
5	Design a FIR low pass filter satisfying the following specifications	[L6][CO5]	[12M]
	$\alpha_{p} \leq 0.1 \text{ dB};$ $\alpha_{s} \geq 44.0 \text{ dB};$		
	$\omega_p = 20 \text{ rad/sec};$ $\omega_s = 600 \text{ rad/sec} \text{ and } \omega_{sf} = 100 \text{ rad/sec}.$		
6	a) Discuss about characteristics linear phase FIR filters.	[L2][CO5]	[6M]
	b) Compare features of different windowing functions.	[L4][CO5]	[6M]
7	a) Explain about design method of optimum equi ripple linear phase FIR filters.	[L2][CO5]	[8M]
	b) What are the desirable characteristics of the window?	[L1][CO5]	[4M]
8	(a) Design FIR filters using symmetric filter.	[L6][CO5]	[6M]
	(b) Explain about the Rectangular window of the FIR filter.	[L2][CO5]	[6M]
9	Design a filter with $H_d(e^{j\omega}) = e^{-j3\omega} -\pi/4 \le \omega \le \pi/4$	[L6][CO5]	[12M]
	$= 0 \qquad \pi/4 \le \omega \le \pi$		
	Using Hamming window with $N = 7$.		
10	Illustrates the followings	[L1][CO5]	[12M]
	i) Rectangular window		
	ii) Hamming window		
	ii) Hanning window		

Prepared by: PMJ BALAJI Asst Professor/ECE.